

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

COURSE: B.Sc. SUBJECT NAME:Chemistry-II Teaching & Evaluation Scheme:-

SEMESTER: II SUBJECT CODE: BSCCHC201

	•							
Teachi	ng Scher	eme(hrs)		Evalua	ation Sc	heme		
			1	heory		Prac	tical (Marks	5)
Th	Pr	Total	Sessional Exam	University Exam				Tata
					Total	Externel	1	

Th	Pr	Total	Sessional Exam		University Exam			.		[Total
			Marks	Hrs	Marks	Hrs	Total	External	Internal	Total	
4	0	4	30	1.5	70	3	100				100

Objectives: -

- The course will help the student to understand internal (atomic and molecular) structure of compound.
- To understand the properties of different types of chemical bonding and in addition to that what are the factors which affect nature of bonding.
- To understand basic characteristic and use of Electromotive Force, Photochemistry, Catalysis.
- Principles of thermodynamics and application.

Prerequisites:-

• Students should have basic knowledge of chemistry up to 10+2 level.

Course outline:-

Sr. No.	Course Contents							
INO.								
1	Organic Chemistry:							
	Alcohols, Phenols and Ethers							
	 IUPAC Nomenclature of Alcohols (Mono, di and trihydric alcohols), 							
	Phenols and Ethers							
	 Physical Properties of Alcohols 							
	 Chemical Properties of Alcohols [Reactions of O-H bond cleavage and C- 							
	O bond cleavage - only reactions, no mechanisms]							

	 Industrial Production of Phenol 					
	1. Dow Process					
	2. Cumene Process					
	 Physical Properties of Phenol 					
	 Chemical Properties of Phenol 					
	1. Reactions of O-H group					
	2. Reactions of aromatic ring [Electrophilic substitution reactions,					
	Reimer Tiemann Reaction, Kolbe Schmitt Reaction, Fries					
	Rearrangement – with reaction mechanism]					
	 Relative acidity of Alcohols and Phenols 					
	 Preparation of Ethers – Williamson Synthesis 					
	 Physical Properties of Ethers 					
	 Chemical Properties of Ethers 					
	1. Substitution Reaction [Reaction with Cl_2 in dark & Reaction of Cl_2					
	in light]					
	2. Reactions involving C-O bond cleavage [hydrolysis, reaction with					
	H_2SO_4 , cold HI and hot HI]					
2	Amines	10				
	 Classification and Nomenclature 					
	 Basicity of Amines 					
	 Physical Properties of Amines 					
	 Preparation of Primary amines [Reduction of nitro compounds, reaction 					
	of organic halides with ammonia, Hoffmann degradation of amides]					
	 Chemical Properties of Primary amines [Reaction with acid chloride 					
	aryl sulphonyl chlorides, reaction with alkyl halides]					
	 Chemical Properties of Aniline [Reactions of Aniline with acid chlorides, 					
	aryl sulphonyl chlorides, Reaction with bromine (formation of 2,4,6 -tri					
	bromo aniline and p- bromo aniline)					
	 Diazotization of Aniline and reactions of Diazonium salt 					
	 Hinesburg Reaction to distinguish between Primary, Secondary and 					
	Tertiary amines					
3	Inorganic Chemistry:	08				
	Ionic Solids					
	 Introduction 					
	 Characteristics of ionic solids 					
	 Born Haber Cycle 					
	 Max Born Equation 					
	 Limiting radius ratio 					
	 Relation between radius ratio, coordination number and crystal 					
	structure					
	 Derivation of r+/r- ratio in trigonal, square planar, body centred and 					
	tetrahedral crystal lattice					

	 Crystal structure of ionic solids: HCP, BCP and FCC 	
	 Crystal structure of ionic solids 	
	1. AB type - CsCl and ZnS (zinc blende)	
	2. AB2 type - CaF2 and TiO2	
	 Defects in Ionic Crystal Lattice (stoichiometric and nonstochiometric) 	
	 Semi conductors 	
4	Molecular Orbital Theory	07
4	 Basic Concepts of Molecular Orbital Theory 	07
	 Characteristics of molecular orbitals with necessary diagram (i.e. 	
	Bonding, anti-bonding, gerade and ungerade orbitals)	
	 Energy level diagram of diatomic molecules of First and Second row 	
	elements of periodic table and NO & CO molecules	
	 Electronic configuration of the above mentioned molecules and 	
	calculation of bond order and magnetic moment	
	 Comparison of MO and VB Theories 	
5	Isomerism in Complexes	05
5	 Introduction 	05
	 Types of isomerism 	
	1. Ionization	
	2. Polymerization	
	3. Hydration	
	4. Coordination	
	5. Position isomerism	
	6. Stereoisomerism	
6	Physical Chemistry:	10
0	Electromotive Force	10
	 Introduction 	
	 Types of Cell Half-cell 	
	convention sign	
	 Types of Electrodes Standard Electrode Potential 	
	 Electrolytic Cell Galvanic Cell 	
	 Galvanic Cell Emf series 	
	 Representation of Cell Belation between C. H and K. 	
	 Relation between G, H and K 	
	Nernst Equation and its applications	07
7	Photochemistry	07
	 Laws of Photochemistry: Grothus- Drapper law; Lambert-Beers law; 	
	Stark-Einstein's law (i.e. law of photochemical equivalence)	

	 Quantum efficiency and Factors affecting quantum efficiency 							
	 Reasons for low and high quantum yield 							
	 Photo sensitization 							
	 Fluorescence 							
	Phosphorescence							
	Chemiluminescence	03						
8								
	Introduction							
	 Types of Catalyst 							
	Functions							
	 Theories 							
	 Acid base Catalyst 							
	 Enzyme Catalyst 							
	 Applications 							
9	Analytical Chemistry:	10						
	Basic Principles of Qualitative Analysis							
	 Introduction 							
	• Factors affecting qualitative analysis: common ion effect, solubility							
	product (ksp)							
	 Use of NH4Cl and NH4OH in Qualitative Analysis 							
	 Use of HCl and H2S in Qualitative Analysis 							
	 Numerical on common ion effect and ksp 							
	 Necessary explanation with chemical equations in 							
	1. Charcoal test							
	2. Cobalt nitrate test							
	3. Borax bead test							
	4. Flame test.							
10	Water Analysis	10						
	 Analysis of hardness of water in terms of 							
	1. Total solid and volatile solid							
	2. Non-filterable solid and non-filterable volatile solid							
	3. Filterable solid							
	4. Total solid							
	5. Total Suspended Solid							
	6. Acidity							
	7. Basicity or Alkalinity							
	8. Turbidity							
	 Various method of determination of Hardness of Water 							

Learning Outcomes:-

The students are expected to

- Understand basic atomic and molecular structure and factors that determine stability of inorganic compounds.
- Familiar with applications, hazards and precautions which should be taken while using radio-compounds.
- Apply thermodynamic to explain different types of chemical reactions.

Books Recommended:-

Organic Chemistry

- 1. 'Advanced Organic Chemistry', ArunBahl and B.S.Bahl.
- 2. 'Text Book of Organic Chemistry for BSc students', B.S. Bahl.
- 3. 'A Textbook of Organic Chemistry', K.S. Tewari, N.K.Vishnoi and S.N. Mehrotra.
- 4. 'Organic Chemistry (Volume I, II & III)', S.M. Mukherji, S.P. Singh and R.P. Kapoor.
- 5. 'Organic Chemistry' Morrison and Boyd.
- 6. 'Organic Chemistry', **T.W. Graham Solomons and Craig B. Fryhle.**
- 7. 'Organic Chemistry', Francis A. Carey.
- 8. 'Organic Chemistry', Clayden.
- 9. 'Fundamentals of Organic Chemistry', **Solomon**, John Wiley.
- 10. 'Textbook of Organic Chemistry', P.L. Soni and H.M. Chawla.
- 11. 'March's Advanced Organic Chemistry Reactions, Mechanism and Structure', Michael B Smith and Jerry March.
- 12. 'Reaction Mechanisms and Reagents in Organic Chemistry', Gurudeep R. Chatwal.
- 13. 'Advanced Organic Reaction Mechanism', N. Tewari.
- 14. 'Organic Chemistry', I.L.Finar.

Inorganic Chemistry

- 1. 'Concise Inorganic Chemistry', J. D. Lee, ELBS.
- 2. 'Basic Inorganic Chemistry', FA. Cotton and G. Wilkinson.
- 3. 'Advanced Inorganic Chemistry (3rd Edition)', **FA. Cotton and G. Wilkinson**, *Wiley Eastern Pvt. Ltd.*
- 4. 'Valence and Molecular Structure', **Cartmell and Fowels**.
- 5. 'Atomic Structure and Chemical Bonding', ManasChanda.
- 6. 'Inorganic Chemistry', SuretkerThate.
- 7. 'Inorganic Chemistry', James E. Huheey (3rd Edition), Harper International SI Edition.
- 8. 'Coordination Chemistry', GurdeepChatwal and M.S Yadav, Himalaya Publishing House.

- 9. 'Principles of Inorganic Chemistry', **B.R. Puri, L.R. Sharma & K.C Kalia**, *Vallabh Publications, Delhi*.
- 10. 'Modern Aspects of Inorganic Chemistry', **H.J. Emeleus and A.G.** Sharpe, Routledge&Kegan Paul Ltd., 39 Store street, London WCIE7DD.
- 11. 'Magneto Chemistry', Shyamal&Datta.

Physical Chemistry

- 1. 'A Textbook of Physical Chemistry', P. L. Soni, O.P. Dharmarha and U.N. Dash.
- 2. 'Physical Chemistry', Dr. D. R. Pandit, A. R. Rao and Padke.
- 3. 'Progressive Physical Chemistry', **Dr. Snehi**, Merrut Publications.
- 4. 'Principles of Physical Chemistry', Puri, Sharma, Pathania.
- 5. 'A text book of Physical Chemistry', **Samuel Glasstone.**
- 6. 'Elements of Physical Chemistry',**Samuel Glasstone and D lewis.**
- 7. 'Thermodynamics for Chemists', Samuel Glasstone.
- 8. 'Introduction to Electrochemistry', **S. Gladstone.**
- 9. 'A text book of Physical Chemistry', **B.K. Sharma.**
- 10. 'Emf',**B.K. Sharma.**
- 11. 'Principles of Physical Chemistry', S.H Maron and C.F Prutton.
- 12. 'Elements of Physical Chemistry', **B.R Puri, L.R Sharma, M.S Pathania**.
- 13. 'Advanced Physical Chemistry', J.N Gurtu.
- 14. 'Physical Chemistry',N Kundu and S.K Jain.
- 15. 'Physical Chemistry', KL Kapoor.
- 16. 'Thermodynamics', Gurudeeep Raj.
- 17. 'Comprehensive Physical Chemistry', HemandSnehi.
- 18. 'Introduction to Physical Chemistry', Madan and Madan.

Analytical Chemistry

- 1. 'Fundamental of analytical chemistry', Skoog& West.
- 2. 'Instrumental Method & Chemical Analysis', B.K. Sharma.
- 3. 'Water Analysis and Water pollution', V.P. Kudesia.
- 4. 'Instrumental Method & Chemical Analysis', ChatwalAnand.
- 5. 'Book for Water Analysis', R. K. Trivedi, V. P. Kudesia.
- 6. 'Analytical Chemistry', **Dick.**
- 7. 'Inorganic Qualitative Analysis', Vogel and Gehani Parekh.
- 8. 'Electrometric Methods of Analysis', Browning.
- 9. 'Principle of Instrumental Analysis', Skoog.

E-Resources:-

- 1. http://www.chemguide.co.uk/atoms/properties/gcse.html
- 2. <u>http://en.wikipedia.org/wiki/Chemical_bond</u>
- 3. <u>http://www.sparknotes.com/chemistry/bonding/properties/section1.rhtml</u>
- 4. http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond2.html
- 5. http://www.chem1.com/acad/webtext/chembond/cb01.html
- 6. http://en.wikipedia.org/wiki/Nuclear chemistry
- 7. <u>http://www.chem.duke.edu/~jds/cruise_chem/nuclear/nuclear.html</u>
- 8. http://library.thinkquest.org/10429/low/nuclear/nuclear.htm
- 9. http://www.visionlearning.com/library/module_viewer.php?mid=59
- 10. http://en.wikipedia.org/wiki/Chemical thermodynamics
- 11. http://www.shodor.org/unchem/advanced/thermo/
- 12. http://www.chem.arizona.edu/~salzmanr/480a/480ants/chemther.html
- 13. http://en.wikipedia.org/wiki/Laws of thermodynamics

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

COURSE: B.Sc. SUBJECT NAME: Chemistry Practical-II Teaching & Evaluation Scheme:-

SEMESTER: II SUBJECT CODE: BSCCHP201

Teachi	ng Schen	ne(hrs)		Evaluation Scheme							
				т	heory			Prac			
Th	Pr	Total	Sessional Ex	am	Universit	ty Exam		External	Internal		Total
			Marks	Hrs	Marks	Hrs				Total	
0	6	6						30	20	50	50

Course outline:-

Sr.	Course Contents
No.	
1	Qualitative Analysis of Inorganic Salts (15 salts - 2 radicals) Inorganic salts containing chlorides, bromides iodides, nitrates, nitrites, sulphates, sulphites, sulphides, carbonates phosphates, oxides, chromates, and dichromates as an anion.
2	Inorganic Volumetric Analysis: (Standard Solutions should be given)
	 Estimation of the amount of Cu²⁺ in the given CuCl₂.2H₂Osolution using 0.01 M EDTA solution
	 Estimation of the amount of Ni²⁺ in the given NiSO₄.7H₂Osolution using 0.01 M EDTA solution
	 Estimation of the amount of Zn²⁺ in the given ZnCl₂ solution using 0.01 M EDTA solution
	 Estimation of total, temporary & permanent hardness of water.
	 Determination of acetic acid in commercial vinegar using 0.1 M NaOH
3	Demonstrative practical:

- Calibration of Glassware (Measuring Cylinder & flasks)
- Crystallization of Inorganic compounds (3-4 compounds)
- Preparation of standard solutions (Primary & Secondary)